INSTALLATION, OPERATION & MAINTENANCE GUIDE

STYLE FHDS

INTERNATIONAL HEADQUARTERS
291 Hurricane Lane
Williston, VT 05495
TEL: (802) 878-8307
FAX: (802) 878-2479

BRAZIL
Rua Javaés, 441/443
Bom Retiro, Sao Paulo
Brazil CEP 01130-010
TEL: 55-11-3736-7373
FAX: 55-11-3736-7355

SOUTHERN USA REPAIR & SERVICE
1719 South Sonny Avenue
Gonzales, LA 70737
TEL: (225) 484-0007
FAX: (225) 341-8922

REVISED: October 2019
OVERVIEW
This guide outlines the installation, operation and maintenance of the Flex-A-Seal Style FHDS Heavy Duty Slurry Seal. The Style FHDS is a single stationary multi-spring cartridge seal designed specifically for challenging slurry applications. This guide, in addition to the manuals provided by the pump manufacturer and the manufacturer of any auxiliary equipment, should be read in its entirety prior to installation.

NOTICE
Flex-A-Seal does not assume responsibility for misuse, or any damages incurred as a result of the misuse of the supplied sealing system. Contact a Flex-A-Seal representative before making any changes to the provided system or design.

WARRANTY
Flex-A-Seal's limited warranty covers material defects and workmanship for its goods and/or services for a period of six (6) months for new items, or three (3) months for repaired items, from the date of their initial use/installation or delivery, whichever occurs first.

SAFETY
1. Read all instructions thoroughly prior to beginning installation. Review engineering prints for special notes and/or instructions.
2. Removal, installation, operation, and maintenance must only be carried out by qualified personnel who have thoroughly read all instructions.
3. The seal must only be used for its intended application. Flex-A-Seal cannot be held liable for use outside the scope of the recommended application.
4. Inspect the replacement seal prior to removal of the old seal or installation of the new seal using the technical information provided in this document. Contact a Flex-A-Seal representative if there are any questions.
5. Follow plant safety regulations and procedures throughout the disassembly/installation process including, but not limited to, the following:
   - Lockout/tagout procedures
   - SDS consultation for any hazardous materials involved
   - Use of proper personal protective equipment
   - Relief of any system pressure and mechanical energy
6. The following symbols have been used throughout the document to highlight important information:
   - Instructions intended to prevent damage to the seal or equipment.
   - Mandatory instructions intended to prevent personal injury or extensive damage to equipment.

NOTE: Style FHDS maximum operating conditions are determined by customer-specified product and operating criteria. Contact Flex-A-Seal for specific application requirements.
### PREPARATION

Verify that equipment has been properly shut off and rendered inoperative according to plant safety protocol (e.g. lockout/tagout procedures).

1. Disassemble the pump seal chamber, in accordance with the pump OEM instructions, to expose the existing seal.

**NOTE:** Document how the seal chamber is disassembled for re-assembly.

2. Carefully remove the existing sealing device, taking care not to damage the shaft.

3. Clean the shaft, shaft sleeve (if present), and seal chamber face of rust, burrs, grit, sharp edges, and set screw damage using fine emery cloth. Wipe clean.

**ATTENTION** Avoid making flat spots or reducing the shaft diameter.

4. If the pump is equipped with a shaft sleeve, verify the condition of its O-ring or gasket and ensure that it is properly located (fully engaged against step/hook/snap ring).

5. The maximum surface finish of sealing surfaces and the shaft or sleeve must be 63 Ra-µin as seen in Figure 1.

6. For ease of installation, the leading edge of the shaft or sleeve should be chamfered as shown in Figure 1 and all parts should be deburred.

---

**Figure 1:** Surface finish and chamfer locations. Fully assembled pump without seal.
VERIFICATION
Successful operation of a Style FHDS Single Heavy Duty Slurry Seal is contingent on conforming equipment dimensions and alignment. Verify the following prior to continuing:

**Figure 2:** Shaft Runout
**Figure 3:** Bearing Fit
**Figure 4:** Bearing Frame Perpendicularity
**Figure 5:** Axial Shaft Movement
**Figure 6:** Seal Chamber Bore Concentricity
**Figure 7:** Seal Chamber Face Squareness

**Maximum Alignment Variation (TIR)**

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Maximum Alignment Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2</td>
<td>Radial shaft movement (shaft runout)</td>
<td>0.0015–0.003 in.</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>Radial bearing fit</td>
<td>0.002–0.003 in.</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Bearing frame perpendicularity</td>
<td>0.0005 in./in.</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>Axial shaft movement (end play)</td>
<td>0.003 in.</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>Seal chamber bore concentricity</td>
<td>0.005 in.</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Seal chamber face squareness</td>
<td>0.0005 in./in.</td>
</tr>
</tbody>
</table>

For proper function and satisfactory operation of the seal it is imperative that connections, dimensions, finishes, and alignments are all acceptable based on the specified design. If measured values exceed the values given above, adjust the equipment to meet the specifications before installing the seal. These values are general guidelines and the pump OEM should be used to verify acceptable values whenever possible.

**NOTE:** Contact Flex-A-Seal if in doubt or question of equipment requirements for specific applications.
SEAL INSTALLATION

The Style FHDS is a specialized, heavy duty stationary multi-spring cartridge seal. It entails the same simple installation procedure as other Flex-A-Seal cartridge seals. Ensure alignment verification of equipment has been completed prior to starting the installation procedure. Review engineering prints for special notes and/or instructions.

**NOTE:** It is essential to use a suitable lubricant when installing a seal, as different lubricants will work better with different elastomers.

1. Disassemble the pump until the seal chamber and shaft are accessible.

2. Remove the seal from its packaging and inspect for damage to any components and seal faces.

**NOTE:** Cartridge seals are shipped from Flex-A-Seal fully assembled and should not be disassembled without cause. If a seal appears damaged prior to installation, contact a Flex-A-Seal representative. Grease, scratches, or nicks on the seal faces may cause leakage.

3. Ensure the shaft and seal housing have been properly cleaned as described in the preparation section.

4. Lightly lubricate the seal sleeve O-ring with a suitable and compatible lubricant.

5. Gently slide the seal on the shaft with the gland gasket facing, but clear of the seal chamber.

6. Reassemble the pump as described by the pump OEM.

7. If the gland is equipped with a gland gasket, lubricate the gland bolts and bolt the gland to the seal chamber using the Legacy Method (Star Pattern) according to torque values specified in the table below. Be sure not to overtighten the gland bolts as this may distort the gland and internal components resulting in seal leakage.

**NOTE:** For mechanical seals with a register fit or a metal-to-metal mate with the seal chamber, standard torque-tension specification for bolts and studs is sufficient.

8. Alternately tighten the provided set screws to the specified torque value according to the table below.

**NOTE:** For mechanical seals utilizing a compression collar in lieu of set screws, alternately tighten the collar screws until secure. Reference the seal drawing for specific details.

9. Remove the setting clips from the seal. Save these for future use in seal removal or impeller adjustment.

---

**Torque Rating for Cartridge Seal Gland Bolts (Flat Gasketed Gland)**

<table>
<thead>
<tr>
<th>Shaft Size</th>
<th>Recommended Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000–2.000 in.</td>
<td>20 ft-lbs.</td>
</tr>
<tr>
<td>24–50 mm</td>
<td>27 N-m</td>
</tr>
<tr>
<td>2.125–3.250 in.</td>
<td>25 ft-lbs.</td>
</tr>
<tr>
<td>53–80 mm</td>
<td>34 N-m</td>
</tr>
<tr>
<td>3.375–4.000 in.</td>
<td>30 ft-lbs.</td>
</tr>
<tr>
<td>85–100 mm</td>
<td>41 N-m</td>
</tr>
</tbody>
</table>

---

**Cup Point Set Screw Torque Specifications**

<table>
<thead>
<tr>
<th>Screw Size</th>
<th>Alloy Steel</th>
<th>Stainless</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10</td>
<td>36 in.-lbs.</td>
<td>26 in.-lbs.</td>
</tr>
<tr>
<td>1/8</td>
<td>87 in.-lbs.</td>
<td>70 in.-lbs.</td>
</tr>
<tr>
<td>5/32</td>
<td>165 in.-lbs.</td>
<td>130 in.-lbs.</td>
</tr>
<tr>
<td>3/32</td>
<td>290 in.-lbs.</td>
<td>230 in.-lbs.</td>
</tr>
<tr>
<td>1/16</td>
<td>620 in.-lbs.</td>
<td>500 in.-lbs.</td>
</tr>
</tbody>
</table>

---

**Recommended Torque Values**

<table>
<thead>
<tr>
<th>Screw Size</th>
<th>Alloy Steel</th>
<th>Stainless</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10</td>
<td>36 in.-lbs.</td>
<td>26 in.-lbs.</td>
</tr>
<tr>
<td>1/4</td>
<td>87 in.-lbs.</td>
<td>70 in.-lbs.</td>
</tr>
<tr>
<td>5/32</td>
<td>165 in.-lbs.</td>
<td>130 in.-lbs.</td>
</tr>
<tr>
<td>3/32</td>
<td>290 in.-lbs.</td>
<td>230 in.-lbs.</td>
</tr>
<tr>
<td>1/16</td>
<td>620 in.-lbs.</td>
<td>500 in.-lbs.</td>
</tr>
</tbody>
</table>
BEFORE STARTING THE EQUIPMENT

1. Ensure the pump shaft is properly aligned at the coupling with the motor.

2. Check that all gland plate bolts and all screws are securely fastened.

3. Once the pump is reassembled, turn the shaft by hand if possible to check for free rotation, if not, recheck installation.

4. Verify that all plumbing and piping plans for the seal are connected and configured according to best practice.

5. Flood the pump, vent all air from the seal chamber, and check the seal for leakage.

6. Ensure all plumbing and venting are free of obstruction and that the chamber is filled with liquid. Check that all alarms connected to auxiliary systems are properly functioning to alert personnel if any issues arise.

   **ATTENTION**
   Dry-running is a major cause for leakage and/or failure of mechanical seals. It is imperative that the seal chamber be completely vented prior to startup and that adequate lubrication is supplied to the seal.

7. Start the pump per the pump manufacturer’s recommendations, observe for proper operation, and check for excessive heat at the seal gland.

   **ATTENTION** Check periodically during operation to ensure that the seal is not overheating.

OPERATION & MAINTENANCE

If leakage is detected, it should be addressed as soon as possible to prevent hazards and protect personnel. Leakage could come from a number of leak paths in the seal, or be caused by changes in the pump operation or condition. Although seals should be inspected regularly for signs of leakage, a properly selected and functioning mechanical seal will run for extended durations without need for extra attention and should not be disturbed unnecessarily (i.e. shut down and disassembled without cause). Below is an inexhaustive list of possible causes of leakage.

<table>
<thead>
<tr>
<th>Primary Causes</th>
<th>Secondary Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Worn seal faces</td>
<td>• Change in duty conditions</td>
</tr>
<tr>
<td>• Damaged O-rings</td>
<td>• Dry-running</td>
</tr>
<tr>
<td>• Damaged springs</td>
<td>• Worn bearings</td>
</tr>
<tr>
<td></td>
<td>• Increased vibration</td>
</tr>
</tbody>
</table>

It is important to periodically inspect and maintain flush systems, shaft alignment, and consistent duty parameters to ensure the seal performs as designed. Often, there is a case of cause & effect with machinery and processing issues upstream that can cause a seal to leak. Check for the root cause of leakage when disassembling equipment for inspection or service.

DECOMMISSIONING EQUIPMENT

When decommissioning equipment it is important to ensure that the pump has been fully isolated from the process and power sources for personnel safety. Pressure and fluid should be fully released before disassembly of the equipment is to begin.

If the equipment has been used with toxic or hazardous fluids, ensure that it is decontaminated and neutralized before decommission begins. There is often residual fluid remaining from the draining process so consult the pump OEM for special cases.
REMOVING THE SEAL

Before opening the pump to remove the seal the warning stated above regarding toxins and hazardous products must be reiterated. Make note of all fluids contained in the pump, drain and decontaminate before opening the housing for seal service.

1. Ensure all fluid has been drained and vented. Equipment should be shut down and locked/tagged out according to OEM and plant specifications.
2. Dismantle equipment sufficiently so that the gland plate and seal housing are exposed and accessible for service.
3. Reset the setting clips that were saved from installation.
4. Back-out the cup point set screws or compression collar screws.
5. Remove the gland bolts/nuts in an even manner.
6. Carefully slide the seal out and off of the shaft.

If a part is going to be returned for service or to any third party, all shipments should have appropriate safe-handling instructions securely attached to the package.

Figure 8: Style FHDS layout with two-piece gland, quench, and throttle bushing.